public final class Binarizer extends Transformer implements HasThreshold, HasThresholds, HasInputCol, HasOutputCol, HasInputCols, HasOutputCols, DefaultParamsWritable
Since 3.0.0,
Binarize
can map multiple columns at once by setting the inputCols
parameter. Note that
when both the inputCol
and inputCols
parameters are set, an Exception will be thrown. The
threshold
parameter is used for single column usage, and thresholds
is for multiple
columns.
Modifier and Type | Method and Description |
---|---|
Binarizer |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
inputCol()
Param for input column name.
|
StringArrayParam |
inputCols()
Param for input column names.
|
static Binarizer |
load(String path) |
Param<String> |
outputCol()
Param for output column name.
|
StringArrayParam |
outputCols()
Param for output column names.
|
static MLReader<T> |
read() |
Binarizer |
setInputCol(String value) |
Binarizer |
setInputCols(String[] value) |
Binarizer |
setOutputCol(String value) |
Binarizer |
setOutputCols(String[] value) |
Binarizer |
setThreshold(double value) |
Binarizer |
setThresholds(double[] value) |
DoubleParam |
threshold()
Param for threshold used to binarize continuous features.
|
DoubleArrayParam |
thresholds()
Array of threshold used to binarize continuous features.
|
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
transform, transform, transform
params
getThreshold
getThresholds
getInputCol
getOutputCol
getInputCols
getOutputCols
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
write
save
initializeForcefully, initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static Binarizer load(String path)
public static MLReader<T> read()
public final StringArrayParam outputCols()
HasOutputCols
outputCols
in interface HasOutputCols
public final StringArrayParam inputCols()
HasInputCols
inputCols
in interface HasInputCols
public final Param<String> outputCol()
HasOutputCol
outputCol
in interface HasOutputCol
public final Param<String> inputCol()
HasInputCol
inputCol
in interface HasInputCol
public String uid()
Identifiable
uid
in interface Identifiable
public DoubleParam threshold()
threshold
in interface HasThreshold
public Binarizer setThreshold(double value)
public DoubleArrayParam thresholds()
thresholds
in interface HasThresholds
public Binarizer setThresholds(double[] value)
public Binarizer setInputCol(String value)
public Binarizer setOutputCol(String value)
public Binarizer setInputCols(String[] value)
public Binarizer setOutputCols(String[] value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Binarizer copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Transformer
extra
- (undocumented)public String toString()
toString
in interface Identifiable
toString
in class Object