public interface LogisticRegressionSummary
extends scala.Serializable
Currently, the summary ignores the instance weights.
Modifier and Type | Method and Description |
---|---|
double |
accuracy()
Returns accuracy.
|
BinaryLogisticRegressionSummary |
asBinary()
Convenient method for casting to binary logistic regression summary.
|
double[] |
falsePositiveRateByLabel()
Returns false positive rate for each label (category).
|
String |
featuresCol()
Field in "predictions" which gives the features of each instance as a vector.
|
double[] |
fMeasureByLabel()
Returns f1-measure for each label (category).
|
double[] |
fMeasureByLabel(double beta)
Returns f-measure for each label (category).
|
String |
labelCol()
Field in "predictions" which gives the true label of each instance (if available).
|
double[] |
labels()
Returns the sequence of labels in ascending order.
|
double[] |
precisionByLabel()
Returns precision for each label (category).
|
String |
predictionCol()
Field in "predictions" which gives the prediction of each class.
|
Dataset<Row> |
predictions()
Dataframe output by the model's
transform method. |
String |
probabilityCol()
Field in "predictions" which gives the probability of each class as a vector.
|
double[] |
recallByLabel()
Returns recall for each label (category).
|
double[] |
truePositiveRateByLabel()
Returns true positive rate for each label (category).
|
double |
weightedFalsePositiveRate()
Returns weighted false positive rate.
|
double |
weightedFMeasure()
Returns weighted averaged f1-measure.
|
double |
weightedFMeasure(double beta)
Returns weighted averaged f-measure.
|
double |
weightedPrecision()
Returns weighted averaged precision.
|
double |
weightedRecall()
Returns weighted averaged recall.
|
double |
weightedTruePositiveRate()
Returns weighted true positive rate.
|
double accuracy()
BinaryLogisticRegressionSummary asBinary()
double[] fMeasureByLabel(double beta)
double[] fMeasureByLabel()
double[] falsePositiveRateByLabel()
String featuresCol()
String labelCol()
double[] labels()
Note: In most cases, it will be values {0.0, 1.0, ..., numClasses-1}, However, if the training set is missing a label, then all of the arrays over labels (e.g., from truePositiveRateByLabel) will be of length numClasses-1 instead of the expected numClasses.
double[] precisionByLabel()
String predictionCol()
Dataset<Row> predictions()
transform
method.String probabilityCol()
double[] recallByLabel()
double[] truePositiveRateByLabel()
double weightedFMeasure(double beta)
double weightedFMeasure()
double weightedFalsePositiveRate()
double weightedPrecision()
double weightedRecall()
double weightedTruePositiveRate()