public class RobustScalerModel extends Model<RobustScalerModel> implements RobustScalerParams, MLWritable
RobustScaler
.
param: range quantile range for each original column during fitting param: median median value for each original column during fitting
Modifier and Type | Method and Description |
---|---|
RobustScalerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
inputCol()
Param for input column name.
|
static RobustScalerModel |
load(String path) |
DoubleParam |
lower()
Lower quantile to calculate quantile range, shared by all features
Default: 0.25
|
Vector |
median() |
Param<String> |
outputCol()
Param for output column name.
|
Vector |
range() |
static MLReader<RobustScalerModel> |
read() |
RobustScalerModel |
setInputCol(String value) |
RobustScalerModel |
setOutputCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
DoubleParam |
upper()
Upper quantile to calculate quantile range, shared by all features
Default: 0.75
|
BooleanParam |
withCentering()
Whether to center the data with median before scaling.
|
BooleanParam |
withScaling()
Whether to scale the data to quantile range.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getLower, getUpper, getWithCentering, getWithScaling, validateAndTransformSchema
getInputCol
getOutputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<RobustScalerModel> read()
public static RobustScalerModel load(String path)
public DoubleParam lower()
RobustScalerParams
lower
in interface RobustScalerParams
public DoubleParam upper()
RobustScalerParams
upper
in interface RobustScalerParams
public BooleanParam withCentering()
RobustScalerParams
withCentering
in interface RobustScalerParams
public BooleanParam withScaling()
RobustScalerParams
withScaling
in interface RobustScalerParams
public final Param<String> outputCol()
HasOutputCol
outputCol
in interface HasOutputCol
public final Param<String> inputCol()
HasInputCol
inputCol
in interface HasInputCol
public String uid()
Identifiable
uid
in interface Identifiable
public Vector range()
public Vector median()
public RobustScalerModel setInputCol(String value)
public RobustScalerModel setOutputCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public RobustScalerModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<RobustScalerModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable