public final class QuantileDiscretizer extends Estimator<Bucketizer> implements DefaultParamsWritable
QuantileDiscretizer
takes a column with continuous features and outputs a column with binned
categorical features. The number of bins can be set using the numBuckets
parameter. It is
possible that the number of buckets used will be smaller than this value, for example, if there
are too few distinct values of the input to create enough distinct quantiles.
NaN handling:
NaN values will be removed from the column during QuantileDiscretizer
fitting. This will
produce a Bucketizer
model for making predictions. During the transformation,
Bucketizer
will raise an error when it finds NaN values in the dataset, but the user can
also choose to either keep or remove NaN values within the dataset by setting handleInvalid
.
If the user chooses to keep NaN values, they will be handled specially and placed into their own
bucket, for example, if 4 buckets are used, then non-NaN data will be put into buckets[0-3],
but NaNs will be counted in a special bucket[4].
Algorithm: The bin ranges are chosen using an approximate algorithm (see the documentation for
org.apache.spark.sql.DataFrameStatFunctions.approxQuantile
for a detailed description). The precision of the approximation can be controlled with the
relativeError
parameter. The lower and upper bin bounds will be -Infinity
and +Infinity
,
covering all real values.
Constructor and Description |
---|
QuantileDiscretizer() |
QuantileDiscretizer(String uid) |
Modifier and Type | Method and Description |
---|---|
static Params |
clear(Param<?> param) |
QuantileDiscretizer |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
Bucketizer |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getHandleInvalid() |
String |
getHandleInvalid() |
static String |
getInputCol() |
static int |
getNumBuckets() |
int |
getNumBuckets() |
static <T> T |
getOrDefault(Param<T> param) |
static String |
getOutputCol() |
static Param<Object> |
getParam(String paramName) |
static double |
getRelativeError() |
double |
getRelativeError() |
static Param<String> |
handleInvalid() |
Param<String> |
handleInvalid()
Param for how to handle invalid entries.
|
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static Param<String> |
inputCol() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static QuantileDiscretizer |
load(String path) |
static IntParam |
numBuckets() |
IntParam |
numBuckets()
Number of buckets (quantiles, or categories) into which data points are grouped.
|
static Param<String> |
outputCol() |
static Param<?>[] |
params() |
static DoubleParam |
relativeError() |
DoubleParam |
relativeError()
Relative error (see documentation for
org.apache.spark.sql.DataFrameStatFunctions.approxQuantile for description)
Must be in the range [0, 1]. |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
QuantileDiscretizer |
setHandleInvalid(String value) |
QuantileDiscretizer |
setInputCol(String value) |
QuantileDiscretizer |
setNumBuckets(int value) |
QuantileDiscretizer |
setOutputCol(String value) |
QuantileDiscretizer |
setRelativeError(double value) |
static String |
toString() |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
static MLWriter |
write() |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
public QuantileDiscretizer(String uid)
public QuantileDiscretizer()
public static QuantileDiscretizer load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static final Param<String> inputCol()
public static final String getInputCol()
public static final Param<String> outputCol()
public static final String getOutputCol()
public static IntParam numBuckets()
public static int getNumBuckets()
public static DoubleParam relativeError()
public static double getRelativeError()
public static Param<String> handleInvalid()
public static String getHandleInvalid()
public static void save(String path) throws java.io.IOException
java.io.IOException
public static MLWriter write()
public String uid()
Identifiable
uid
in interface Identifiable
public QuantileDiscretizer setRelativeError(double value)
public QuantileDiscretizer setNumBuckets(int value)
public QuantileDiscretizer setInputCol(String value)
public QuantileDiscretizer setOutputCol(String value)
public QuantileDiscretizer setHandleInvalid(String value)
public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Bucketizer fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<Bucketizer>
dataset
- (undocumented)public QuantileDiscretizer copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<Bucketizer>
extra
- (undocumented)public IntParam numBuckets()
See also handleInvalid
, which can optionally create an additional bucket for NaN values.
default: 2
public int getNumBuckets()
public DoubleParam relativeError()
org.apache.spark.sql.DataFrameStatFunctions.approxQuantile
for description)
Must be in the range [0, 1].
default: 0.001public double getRelativeError()
public Param<String> handleInvalid()
public String getHandleInvalid()