public class LogisticRegression extends ProbabilisticClassifier<Vector,LogisticRegression,LogisticRegressionModel> implements DefaultParamsWritable
Constructor and Description |
---|
LogisticRegression() |
LogisticRegression(String uid) |
Modifier and Type | Method and Description |
---|---|
static IntParam |
aggregationDepth() |
void |
checkThresholdConsistency()
If
threshold and thresholds are both set, ensures they are consistent. |
static Params |
clear(Param<?> param) |
LogisticRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static DoubleParam |
elasticNetParam() |
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
family() |
Param<String> |
family()
Param for the name of family which is a description of the label distribution
to be used in the model.
|
static Param<String> |
featuresCol() |
Param<String> |
featuresCol()
Param for features column name.
|
static M |
fit(Dataset<?> dataset) |
static M |
fit(Dataset<?> dataset,
ParamMap paramMap) |
static scala.collection.Seq<M> |
fit(Dataset<?> dataset,
ParamMap[] paramMaps) |
static M |
fit(Dataset<?> dataset,
ParamPair<?> firstParamPair,
ParamPair<?>... otherParamPairs) |
static M |
fit(Dataset<?> dataset,
ParamPair<?> firstParamPair,
scala.collection.Seq<ParamPair<?>> otherParamPairs) |
static BooleanParam |
fitIntercept() |
static <T> scala.Option<T> |
get(Param<T> param) |
static int |
getAggregationDepth() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static double |
getElasticNetParam() |
static String |
getFamily() |
String |
getFamily() |
static String |
getFeaturesCol() |
String |
getFeaturesCol() |
static boolean |
getFitIntercept() |
static String |
getLabelCol() |
String |
getLabelCol() |
static int |
getMaxIter() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
String |
getPredictionCol() |
static String |
getProbabilityCol() |
static String |
getRawPredictionCol() |
String |
getRawPredictionCol() |
static double |
getRegParam() |
static boolean |
getStandardization() |
double |
getThreshold()
Get threshold for binary classification.
|
double[] |
getThresholds()
Get thresholds for binary or multiclass classification.
|
static double |
getTol() |
static String |
getWeightCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
Param<String> |
labelCol()
Param for label column name.
|
static LogisticRegression |
load(String path) |
static IntParam |
maxIter() |
static Param<?>[] |
params() |
static Param<String> |
predictionCol() |
Param<String> |
predictionCol()
Param for prediction column name.
|
static Param<String> |
probabilityCol() |
static Param<String> |
rawPredictionCol() |
Param<String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
static DoubleParam |
regParam() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
LogisticRegression |
setAggregationDepth(int value)
Suggested depth for treeAggregate (greater than or equal to 2).
|
LogisticRegression |
setElasticNetParam(double value)
Set the ElasticNet mixing parameter.
|
LogisticRegression |
setFamily(String value)
Sets the value of param
family . |
static Learner |
setFeaturesCol(String value) |
LogisticRegression |
setFitIntercept(boolean value)
Whether to fit an intercept term.
|
static Learner |
setLabelCol(String value) |
LogisticRegression |
setMaxIter(int value)
Set the maximum number of iterations.
|
static Learner |
setPredictionCol(String value) |
static E |
setProbabilityCol(String value) |
static E |
setRawPredictionCol(String value) |
LogisticRegression |
setRegParam(double value)
Set the regularization parameter.
|
LogisticRegression |
setStandardization(boolean value)
Whether to standardize the training features before fitting the model.
|
LogisticRegression |
setThreshold(double value)
Set threshold in binary classification, in range [0, 1].
|
LogisticRegression |
setThresholds(double[] value)
Set thresholds in multiclass (or binary) classification to adjust the probability of
predicting each class.
|
LogisticRegression |
setTol(double value)
Set the convergence tolerance of iterations.
|
LogisticRegression |
setWeightCol(String value)
Sets the value of param
weightCol . |
static BooleanParam |
standardization() |
static DoubleParam |
threshold() |
static DoubleArrayParam |
thresholds() |
static DoubleParam |
tol() |
static String |
toString() |
static StructType |
transformSchema(StructType schema) |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
static Param<String> |
weightCol() |
static MLWriter |
write() |
setProbabilityCol
setRawPredictionCol
fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchema
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
public LogisticRegression(String uid)
public LogisticRegression()
public static LogisticRegression load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static M fit(Dataset<?> dataset, ParamPair<?> firstParamPair, scala.collection.Seq<ParamPair<?>> otherParamPairs)
public static M fit(Dataset<?> dataset, ParamPair<?> firstParamPair, ParamPair<?>... otherParamPairs)
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static Learner setLabelCol(String value)
public static Learner setFeaturesCol(String value)
public static Learner setPredictionCol(String value)
public static M fit(Dataset<?> dataset)
public static StructType transformSchema(StructType schema)
public static final Param<String> rawPredictionCol()
public static final String getRawPredictionCol()
public static E setRawPredictionCol(String value)
public static final Param<String> probabilityCol()
public static final String getProbabilityCol()
public static final DoubleArrayParam thresholds()
public static E setProbabilityCol(String value)
public static final DoubleParam regParam()
public static final double getRegParam()
public static final DoubleParam elasticNetParam()
public static final double getElasticNetParam()
public static final IntParam maxIter()
public static final int getMaxIter()
public static final BooleanParam fitIntercept()
public static final boolean getFitIntercept()
public static final DoubleParam tol()
public static final double getTol()
public static final BooleanParam standardization()
public static final boolean getStandardization()
public static final Param<String> weightCol()
public static final String getWeightCol()
public static final DoubleParam threshold()
public static final IntParam aggregationDepth()
public static final int getAggregationDepth()
public static final Param<String> family()
public static String getFamily()
public static void save(String path) throws java.io.IOException
java.io.IOException
public static MLWriter write()
public String uid()
Identifiable
uid
in interface Identifiable
public LogisticRegression setRegParam(double value)
value
- (undocumented)public LogisticRegression setElasticNetParam(double value)
value
- (undocumented)public LogisticRegression setMaxIter(int value)
value
- (undocumented)public LogisticRegression setTol(double value)
value
- (undocumented)public LogisticRegression setFitIntercept(boolean value)
value
- (undocumented)public LogisticRegression setFamily(String value)
family
.
Default is "auto".
value
- (undocumented)public LogisticRegression setStandardization(boolean value)
value
- (undocumented)public LogisticRegression setThreshold(double value)
If the estimated probability of class label 1 is greater than threshold, then predict 1, else 0. A high threshold encourages the model to predict 0 more often; a low threshold encourages the model to predict 1 more often.
Note: Calling this with threshold p is equivalent to calling setThresholds(Array(1-p, p))
.
When setThreshold()
is called, any user-set value for thresholds
will be cleared.
If both threshold
and thresholds
are set in a ParamMap, then they must be
equivalent.
Default is 0.5.
value
- (undocumented)public double getThreshold()
If thresholds
is set with length 2 (i.e., binary classification),
this returns the equivalent threshold:
1 / (1 + thresholds(0) / thresholds(1))
.
Otherwise, returns `threshold` if set, or its default value if unset.
@group getParam
@throws IllegalArgumentException if `thresholds` is set to an array of length other than 2.public LogisticRegression setWeightCol(String value)
weightCol
.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
value
- (undocumented)public LogisticRegression setThresholds(double[] value)
Note: When setThresholds()
is called, any user-set value for threshold
will be cleared.
If both threshold
and thresholds
are set in a ParamMap, then they must be
equivalent.
setThresholds
in class ProbabilisticClassifier<Vector,LogisticRegression,LogisticRegressionModel>
value
- (undocumented)public double[] getThresholds()
If thresholds
is set, return its value.
Otherwise, if threshold
is set, return the equivalent thresholds for binary
classification: (1-threshold, threshold).
If neither are set, throw an exception.
public LogisticRegression setAggregationDepth(int value)
value
- (undocumented)public LogisticRegression copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Predictor<Vector,LogisticRegression,LogisticRegressionModel>
extra
- (undocumented)public Param<String> family()
public String getFamily()
public void checkThresholdConsistency()
threshold
and thresholds
are both set, ensures they are consistent.
IllegalArgumentException
- if threshold
and thresholds
are not equivalentpublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public Param<String> rawPredictionCol()
public String getRawPredictionCol()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.public Param<String> labelCol()
public String getLabelCol()
public Param<String> featuresCol()
public String getFeaturesCol()
public Param<String> predictionCol()
public String getPredictionCol()