The tensor library is developed by J. Burguet and distributed as an add-on package of GSL. See here and here.
GSL::Tensor.new(rank, dimention)
GSL::Tensor.alloc(rank, dimention)
GSL::Tensor[rank, dimention]
Create a tensor of rank rank and dimension dimention.
GSL::Tensor.calloc(rank, dimention)
Creates a tensor of rank rank and dimension dimention, and initializes all the elements to zero.
GSL::Tensor.copy(tensor)
Create a tensor copying the existing tensor tensor.
GSL::Tensor.memcpy(dest, src)
Copies the tensor src to another dest. The two tensors must have the same shape.
GSL::Tensor.swap(a, b)
Exchanges the elements of the tensor a and b.
GSL::Tensor#set_zero
Sets all the element of the tensor self to zero.
GSL::Tensor#set_all(x)
Sets all the element of the tensor self to x.
GSL::Tensor#set(indices, x)
Sets the element of the given indices to x.
GSL::Tensor#get(indices)
Returns the tensor element. If the number of indices given is smaller than the rank of the tensor, the method GSL::Tensor#subtensor is called.
Ex:
>> t = Tensor.new(2, 3) => #<GSL::Tensor:0x762ae8> >> t.set(1, 2, 2, 123) => #<GSL::Tensor:0x762ae8> >> t.get(1, 2, 2) => 123.0 >> t[0, 0, 2] = 456 => 456 >> t[0, 0, 2] => 456.0
GSL::Tensor#subtensor(indices)
Return a subtensor.
Ex:
>> require("gsl") => true >> t = Vector[1..125].to_tensor(3, 5) => GSL::Tensor: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 ... ] >> t[0] => GSL::Tensor::View: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 8.000e+00 9.000e+00 1.000e+01 1.100e+01 1.200e+01 1.300e+01 1.400e+01 1.500e+01 1.600e+01 1.700e+01 1.800e+01 1.900e+01 2.000e+01 2.100e+01 2.200e+01 2.300e+01 2.400e+01 2.500e+01 ] >> t[0,2] => GSL::Tensor::View: [ 1.100e+01 1.200e+01 1.300e+01 1.400e+01 1.500e+01 ] >> t[3,1] => GSL::Tensor::View: [ 8.100e+01 8.200e+01 8.300e+01 8.400e+01 8.500e+01 ] >> t[1][2] => GSL::Tensor::View: [ 3.600e+01 3.700e+01 3.800e+01 3.900e+01 4.000e+01 ]
GSL::Tensor#swap_indices(i, j)
GSL::Tensor#data
Returns the data as GSL::Vector::View.
GSL::Tensor#to_v
Creates a new vector from the tensor.
GSL::Tensor#to_vector
Converts the tensor of rank 1 into a GSL::Vector::View object.
GSL::Tensor#to_matrix
Converts the tensor of rank 2 into a GSL::Matrix::View object.
GSL::Tensor#fwrite(io)
GSL::Tensor#fwrite(filename)
GSL::Tensor#fread(io)
GSL::Tensor#fread(filename)
GSL::Tensor#fprintf(io, format="%g")
GSL::Tensor#fprintf(filename, format="%g")
GSL::Tensor#fscanf(io)
GSL::Tensor#fscanf(filename)
GSL::Tensor#max
GSL::Tensor#min
GSL::Tensor#minmax
GSL::Tensor#max_index
GSL::Tensor#min_index
GSL::Tensor#minmax_index
GSL::Tensor#add(b)
GSL::Tensor#+(b)
Creates a new tensor adding two tensors self and b.
GSL::Tensor#add!(b)
Adds the element of tensor b to the elements of self , in-place.
GSL::Tensor#sub(b)
GSL::Tensor#+(b)
Creates a new tensor subtracting the tensors b from self.
GSL::Tensor#sub!(b)
Subtracts the element of tensor b from the elements of self , in-place.
GSL::Tensor#mul_elements(b)
This calculate element-by-element multiplication of self and b, and returns a new tensor.
GSL::Tensor#mul_elements!(b)
Multiplies the elements of tensor self to the elements of b , in-place.
GSL::Tensor#div_elements(b)
GSL::Tensor#/(b)
This calculate element-by-element division of self and b, and returns a new tensor. Multiplies the elements of tensor b to the elements of self , in-place.
GSL::Tensor#div_elements!(b)
Divides the elements of tensor self to the elements of b , in-place.
GSL::Tensor#add_constant(x)
Creates a new tensor adding the constant x to the tensor self.
GSL::Tensor#add_constant!(x)
Adds the constant x to the elements of tensor self , in-place.
GSL::Tensor#scale(x)
Creates a new tensor scaling the tensor self by the constant x.
GSL::Tensor#scale!(x)
Multiplies the constant x to the elements of tensor self , in-place.
GSL::Tensor#add_diagonal(x)
Creates a new tensor adding the constant x to the diagonal elements of the tensor self.
GSL::Tensor#add_diagonal!(x)
Adds the constant x to the diagonal elements of tensor self , in-place.
GSL::Tensor#product(b)
GSL::Tensor#*(b)
Calculate tensorian product of self and b.
GSL::Tensor#contract(i, j)
GSL::Tensor#equal?(b, eps = 1e-10)
GSL::Tensor#==(b)
Returns true if the tensors have same size and elements equal to absolute accurary eps for all the indices, and false otherwise.
GSL::Tensor#isnull
Returns 1 if all the elements of the tensor are zero, and 0 otherwise.
GSL::Tensor#isnull?
Returns true if all the elements of the tensor are zero, and false otherwise.
GSL::Tensor#rank
Returns the rank
GSL::Tensor#dimension
Returns the dimension
GSL::Tensor#size
Returns the size
Generated with the Darkfish Rdoc Generator 2.