
OPAM: a Package Management Systems for OCaml

Developer Manual (version 1.0)

Thomas GAZAGNAIRE
thomas.gazagnaire@ocamlpro.com

February 20, 2013

Contents

1 Managing Packages 3
1.1 State . 3
1.2 Files . 4

1.2.1 General Syntax of OPAM files . 4
1.2.2 Package List: installed, reinstall and update 5
1.2.3 Global Configuration File: config . 5
1.2.4 Package Specification files: *.opam . 5
1.2.5 Package installation files: *.install . 7
1.2.6 Pinned Packages: pinned . 8

1.3 Commands . 8
1.3.1 Creating a Fresh Client State . 8
1.3.2 Listing Packages . 9
1.3.3 Getting Package Info . 9
1.3.4 Installing a Package . 10
1.3.5 Updating Index Files . 10
1.3.6 Upgrading Installed Packages . 11
1.3.7 Uploading Packages . 11
1.3.8 Removing Packages . 12
1.3.9 Dependency Solver . 12

2 Managing Repositories 12
2.1 State . 12
2.2 Files . 13

2.2.1 Index of packages . 13
2.3 Commands . 13

2.3.1 Managing OPAM repository . 13

1

thomas.gazagnaire@ocamlpro.com

3 Managing Compiler Switches 13
3.1 State . 14
3.2 Files . 14

3.2.1 Compiler Description Files . 14
3.3 Commands . 15

3.3.1 Switching Compiler Version . 15

4 Managing Configurations 16
4.1 State . 16
4.2 Files . 16

4.2.1 Substitution files: *.in . 16
4.2.2 Package configuration files: *.config . 16

4.3 Commands . 17
4.3.1 Getting Package Configuration . 17

Overview

OPAM is a source-based package manager for OCaml. It supports multiple simultaneous com-
piler installations, flexible package constraints, and a Git-friendly development workflow.

A package management system has typically two kinds of users: end-users who install and
use packages for their own projects; and packagers, who create and upload packages. End-users
want to install on their machine a consistent collection of packages – a package being a collection
of OCaml libraries and/or programs. Packagers want to take a collection of their own libraries
and programs and make them available to other developpers.

This document describes the design of OPAM to answer both of these needs.

Conventions

In this document, $home, $opam, $package and $path are assumed to be defined as follows:

• $home refers to the end-user home path, typically /home/thomas/ on linux and /Users/thomas/

on OSX.

• $opam refers to the filesystem subtree containing the client state. Default directory is
$home/.opam.

• $package refers to a path in the packager filesystem, where lives the collection of libraries
and programs he wants to package.

• $path refers to a list of paths in the packager filesystem, where lives the collection of
programs (ocamlc, ocamldep, ocamlopt, ocamlbuild, ...).

User variables are written in capital letters, prefixed by $. For instance package names will
be written $NAME, package versions $VERSION, and the version of the ocaml compiler currently
installed $SWITCH.

This document is organized as follows: Section 1 describes the core of OPAM, e.g. the
management of packages. Section 2 describes how repositories are handled, Section 3 focus on
compiler switches and finally Section 4 explain how packages can define configuration variables
(which can be later used by the build system).

2

1 Managing Packages

1.1 State

The client state is stored on the filesystem, under $opam. All the configurations files, libraries
and binaries related to a specific instance of the OCaml compiler in $opam/$SWITCH, where
$SWITCH is the name of that specific compiler instance. See Section 3 for more details about
compiler switches.

• $opam/config is the main configuration file. It defines the OPAM version, the repository
addresses and the current compiler version. The file format is described in §1.2.3.

• $opam/opam/$NAME.$VERSION.opam is the OPAM specification for the package $NAME with
version $VERSION (which might not be installed). The format of OPAM files is described
in §1.2.4.

• $opam/descr/$NAME.$VERSION contains the description for the version $VERSION of pack-
age $NAME (which might not be installed). The first line of this file is the package synopsis.

• $opam/archives/$NAME.$VERSIONopam.tar.gz+ contains the source archives for the ver-
sion $VERSION of package $NAME. This archive might be a bit different from the upstream
library as it might have been repackaged by OPAM to include additional files.

• $opam/$SWITCH/installed is the list of installed packages for the compiler instance
$SWITCH. The file format is described in §1.2.2.

• $opam/$SWITCH/config/$NAME.config is a platform-specific configuration file of for the
installed package $NAME with the compiler instance $SWITCH. The file format is described
in §1.2.3. $opam/$SWITCH/config/ can be shortened to $config/ for more readability.

• $opam/$SWITCH/install/$NAME.install is a platform-specific package installation file
for the installed package $NAME with the compiler instance $SWITCH. The file format is
described in §1.2.5. $opam/$SWITCH/install can be shortened to $install/ for more
readability.

• $opam/$SWITCH/lib/$NAME/ contains the libraries associated to the installed package
$NAME with the compiler instance $SWITCH. $opam/$SWITCH/lib/ can be shortened to
$lib/ for more readability.

• $opam/$SWITCH/doc/$NAME/ contains the documentation associated to the installed pack-
age NAME with the compiler instance $SWITCH. $opam/SWITCH/doc/ can be shortened to
$doc/ for more readability.

• $opam/$SWITCH/bin/ contains the program files for all installed packages with the com-
piler instance $SWITCH. $opam/$SWITCH/bin/ can be shortened to $bin/ for more read-
ability.

• $opam/$SWITCH/build/$NAME.$VERSION/ is a tempory folder used to build package $NAME
with version $VERSION, with compiler instance $SWITCH. $opam/$SWITCH/build/ can be
shortened to $build/ for more readability.

• $opam/$SWITCH/reinstall contains the list of packages which has been changed upstream
since the last upgrade. This can happen for instance when a packager uploads a new
archive or fix the OPAM file for a specific package version. Every package appearing in

3

this file will be reinstalled (or upgraded if a new version is available) during the next
upgrade when the current instance of the compiler is $SWITCH. The file format is similar
to the one described in §1.2.2.

• $opam/$SWITCH/pinned contains the list of pinned packages. The file format is described
in §??.

• $opam/$SWITCH/pinned.cache. contains cached information for cached packages. OPAM
uses it on update to check which package needs to be upgraded.

1.2 Files

1.2.1 General Syntax of OPAM files

Most of the files in the client and server states share the same syntax defined in this section.

Base types The base types for values are:

• BOOL is either true or false

• STRING is a doubly-quoted OCaml string, for instance: "foo", "foo-bar", . . .

• SYMBOL contains only non-letter and non-digit characters, for instance: =, <=, . . .
Some symbols have a special meaning and thus are not valid SYMBOLs: “() [] { }

:”.

• IDENT starts by a letter and is followed by any number of letters, digit and symbols,
for instance: foo, foo-bar,

Compound types Types can be composed together to build more complex values:

• X Y is a space-separated pair of value.

• X | Y is a value of type either X or Y.

• ?X is zero or one occurrence of a value of type X.

• X+ is a space-separated list of values of at least one value of type X.

• X* is a space-separated list of values of values of type X (it might contain no value).

All structured OPAM files share the same syntax:

<file> := <item>*

<item> := IDENT : <value>

| ?IDENT: <value>

| IDENT STRING { <item>+ }

<value> := BOOL

| INT

| STRING

| SYMBOL

| IDENT

| [<value>+]

| value { <value>+ }

4

1.2.2 Package List: installed, reinstall and update

The following configuration files: $opam/$SWITCH/installed, $opam/$SWITCH/reinstall, and
$opam/repo/$REPO/updated follow a very simple syntax. The file is a list of lines which con-
tains a space-separated name and a version. Each line $NAME $VERSION means that the version
$VERSION of package $NAME has been compiled with the compiler instance $SWITCH and has
been installed on the system in $lib/$NAME and $bin/.

For instance, if batteries version 1.0+beta and ocamlfind version 1.2 are installed, then
$opam/$SWITCH/installed will contain:

batteries 1.0+beta

ocamlfind 1.2

1.2.3 Global Configuration File: config

$opam/config follows the syntax defined in §1.2.1 with the following restrictions:

<file> :=

opam-version: "1"

repositories: [STRING+]

switch: STRING

cores: INT

The field opam-version indicates the current OPAM format.
The field repositories contains the list of OPAM repositories.
The field switch corresponds to the current compiler instance.
The field cores is the number of parallel process that OPAM will use when trying to build

the packages.

1.2.4 Package Specification files: *.opam

$opam/opam/$NAME.$VERSION.opam follows the syntax defined in §1.2.1 with the following re-
strictions:

<file> :=

opam-version: "1"

?name: STRING

?version: STRING

maintainer: STRING

?homepage: STRING

?authors: [STRING+]

?doc: STRING

?license: STRING

?tags: [STRING+]

?subst: [STRING+]

?patches: [(STRING ?<filter>)+]

?build: commands

?build-doc: commands

?build-test: commands

?remove: commands

?depends: [<and-formula(package)>+]

?depopts: [<or-formula(package)>+]

?depexts: [[STRING+] [STRING+]+

5

?conflicts: [<package>+]

?os: [<formula(os)>+]

?ocaml-version: [<and-formula(constraint)>+]

?libraries: [STRING+]

?syntax: [STRING+]

<argument> := STRING

| IDENT

<command> := [(<argument> ?<filter>)+] ?<filter>

<commands> := <command>

| [<command>+]

<filter> := { and-formula(<argument> <comp> <argument>) }

<formula(x)> := <formula(x)> ’&’ <formula(x)>

| <formula(x)> ’|’ <formula(x)>

| (<formula(x)>)

| <x>

<package> := STRING

| STRING { <and-formula(constraint)> }

<constraint> := <comp> STRING

<comp> := ’=’ | ’<’ | ’>’ | ’>=’ | ’<=’

<and-formula(x)> := <x> <and-formula(x)>

| <formula(x)>

<or-formula(x)> := <x> <or-formula(x)>

| <package(x)>

<os> := STRING

| ’!’ STRING

• The first line specifies the OPAM version.

• The content of name is $NAME, the content of version is $VERSION. Both fields are optional
are they can be inferred from the filename.

• The content of maintainer is the contact address of the package maintainer.

• The license, homepage doc and authors fields are optional. doc should be the address
of the online documentation for the package.

• The tags field is optional contains a list of tags to classify the package.

• The content of subst is the list of files to substitute variable (see §4.2.1 for the file format
and §4 for the semantic of file substitution).

• The content of patches is a list of patches to be applied. Substitutions happen before
patch application, so patches can contain strings which will substituted.

• The content of build is the list of commands to run in order to build the package libraries.
The build script should build all the libraries and syntax extensions exported by the

6

package and it should produce the platform-specific configuration and install files (e.g.
$NAME.config and $NAME.install, see §1.2.3 and §1.2.5).

Each command and command argument is substituted (see §4.2.1 and §4, with the iden-
tifier X being equivalent to the string "%{X}%") and can be followed by an optional filter,
whose evaluation will result in the command (or the command argument) being executed
or not. A typical example is OS-related filters, where we can choose to execute commands
depending on the current OS:

build: [

["mv" "Makefile.unix" "Makefile"] {os != "win32"}

["mv" "Makefile.win32" "Makefile"] {os = "win32"}

[make]

]

• build-doc is optional and describes how the documentation is built.

• build-test is optional and describes how the tests are built and run.

• The content of remove is the command to run before deleting the installed file.

• The depends, depots and conflicts fields contain formulas over package names, option-
ally parametrized by version constraints. Some examples or package formula:

– A package name: "foo";

– A package name with version constraints: "foo" {>= "1.2" & <= "3.4"}

depends is an AND formula, which means that top-level & are not mandatory. For in-
stance, "foo" {<= "1.2"} ("bar" | "gna" {= "3.14"}) has the following semantic:
“both any version of package "foo" lesser or equal to 1.2 and either any version of package
"bar" or the version 3.14 of package "gna".”

The optdeps field contains a OR formula over package names, which means that top-
level | are not mandatory. This field express optional dependencies that OPAM will not
try to install. However, when installing a new package it will check if it is an optional
dependency of already installed packages. If it is the case, it will re-install the packages
(and their transitive forward-dependency closure).

• The depexts field is optional and contains tags describing the external dependencies.

• The os and ocaml-version fields are optional constraints over the supported OS and
compiler version for this package. In case the filter is not valid, the package is disabled.

• The libraries and syntax fields contain the libraries and syntax extensions defined by
the package. See Section 4 for more details.

1.2.5 Package installation files: *.install

$opam/$SWITCH/install/NAME.install follows the syntax defined in §1.2.1 with the following
restrictions:

7

<file> :=

opam-version: "1"

?lib: [STRING+]

?bin: [<mv>+]

?doc: [STRING+]

?misc: [<mv>+]

<mv> := STRING

| STRING { STRING }

• Files listed under lib are copied to $lib/$NAME/.

• Files listed under bin are copied to $bin/ (they can be renamed using $SRC { $DST }; in
this case $SRC should be a simple filename, ie. it should not start with a directory name).

• Files listed under doc are copied to $doc/$NAME/.

• Files listed under misc should be processed as follows: for each pair $SRC { $DST }, the
tool should ask the user if he wants to install $SRC to the absolute path $DST.

• OPAM will try to install all the file in sequence, and it will fail in case a source filename
is not available. To tell OPAM a source filename might not be generated (because of
byte/native constraints or because of optional dependencies) the source filename should
start by ?. Remark: it is much cleaner if the underlying build-system can generate the
right .install files, containing the existing files only.

1.2.6 Pinned Packages: pinned

$opam/$SWITCH/pinned contains a list of lines of the form:

<name> <kind> <path>

• <name> is the name of the pinned package

• <kind> is the kind of pinning. This could be version, local, git or darcs.

• <path> is either the version number (if kind is version) or the path to synchronize with.

1.3 Commands

1.3.1 Creating a Fresh Client State

When an end-user starts OPAM for the first time, he needs to initialize $opam/ in a consistent
state. In order to do so, he should run:

$ opam init [--kind $KIND] $REPO $ADDRESS [--comp $VERSION]

Where:

• $KIND is the kind of OPAM repository (default is http);

• $REPO is the name of the repository (default is default); and

• ADDRESS is the repository address (default is http://opam.ocamlpro.com/pub).

8

• $COMP is the compiler version to use (default is the version of the compiler installed on
the system).

This command will:

1. Create the file $opam/config (as specified in §1.2.3)

2. Create an empty $opam/$SWITCH/installed file, $SWITCH is the version from the OCaml
used to compile $opam. In particular, we will not fail now if there is no ocamlc in $path.

3. Initialize $opam/repo/$REPO by running the appropriate operations (depending on the
repository kind).

4. Symlink all OPAM and description files (ie. create a symbolic link from every file in
$opam/repo/$REPO/opam/ to $opam/opam/ and from every file in $opam/repo/$REPO/descr/

to $opam/descr/).

5. Create $opam/repo/index and for each version $VERSION of package $NAME appearing in
the repository, append the line ’$REPO $NAME $VERSION’ to the file.

6. Create the empty directories $opam/archives, $lib/, $bin/ and $doc/.

1.3.2 Listing Packages

When an end-user wants to have information on all available packages, he should run:

$ opam list

This command will parse $opam/$SWITCH/installed to know the installed packages, and
$opam/opam/*.opam to get all the available packages. It will then build a summary of each
packages. The description of each package will be read in $opam/descr/ if it exists.

For instance, if batteries version 1.1.3 is installed, ounit version 2.3+dev is installed and
camomille is not installed, then running the previous command should display:

batteries 1.1.3 Batteries is a standard library replacement

ounit 2.3+dev Test framework

camomille -- Unicode support

1.3.3 Getting Package Info

In case the end-user wants a more details view of a specific package, he should run:

$ opam info $NAME

This command will parse $opam/$SWITCH/installed to get the installed version of $NAME,
will process $opam/repo/index to get the repository where the package comes from and will
look for $opam/opam/$NAME.*.opam to get available versions of $NAME. It can then display:

package: $NAME

version: $VERSION

versions: $VERSION1, $VERSION2, ...

libraries: $LIB1, $LIB2, ...

syntax: $SYNTAX1, $SYNTAX2, ...

9

repository: $REPO

description:

$SYNOPSIS

$LINE1

$LINE2

$LINE3

...

1.3.4 Installing a Package

When an end-user wants to install a new package, he should run:

$ opam install $NAME

This command will:

1. Compute the transitive closure of dependencies and conflicts of packages using the depen-
dency solver (see §1.3.9). If the dependency solver returns more than one answer, the tool
will ask the user to pick one, otherwise it will proceed directly. The dependency solver
should also mark the packages to recompile.

2. The dependency solver sorts the collections of packages in topological order. Then, for
each of them do:

(a) Check whether the package is already installed by looking for the line $NAME $VERSION

in $opam/$SWITCH/installed. If not, then:

(b) Look into the archive cache to see whether it has already been downloaded. The
cache location is: $opam/archives/$NAME.VERSION.tar.gz

(c) If not, process $opam/repo/index/ to get the repository $REPO where the archive is
available and then ask the repository to download the archive if necessary..

Once this is done, symlink the archive in $opam/archives.

(d) Decompress the archive into $build/$NAME.$VERSION/.

(e) Substitute the required files.

(f) Run the list of commands to build the package with $bin in the path.

(g) Process $build/$NAME.$VERSION/$NAME.install to install the created files. The
file format is described in §1.2.5.

(h) Install the installation file $build/$NAME.$VERSION/$NAME.install in $install/

and the configuration file $build/$NAME.$VERSION/$NAME.config in $config/.

1.3.5 Updating Index Files

When an end-user wants to know what are the latest packages available, he will write:

$ opam update

This command will follow the following steps:

• Update each repositories in $opam/config.

10

• For each repositories in $opam/config, process $opam/repo/$REPO/updated and update
$opam/repo/index, $opam/opam/ and $opam/desc accordingly (ie. add the right lines
in $opam/repo/index and create the missing symlinks). Here, the order in which the
repositories are specified is important: the first repository containing a given version
for a package will be the one providing it (this can be changed manually by editing
$opam/repo/index later).

• For each line $REPO $NAME $VERSION in $opam/repo/index, if the version $VERSION of
package $NAME has been modified upstream (ie. if the line $NAME $VERSION appears in
$opam/repo/$REPO/$updated) and if the package is already installed (ie. it appears
in opam/$SWITCH/installed), then update $opam/$SWITCH/reinstall accordingly (for
each compiler version $SWITCH).

Packages in $opam/$SWITCH/reinstall will be reinstalled (or upgraded if a new version is
available) on the next opam upgrade (see §1.3.6), with $SWITCH being the current compiler
version when the upgrade command is run.

• Delete each $opam/repo/$REPO/$updated

1.3.6 Upgrading Installed Packages

When an end-user wants to upgrade the packages installed on his host, he will write:

$ opam upgrade

This command will:

• Call the dependency solver (see §1.3.9) to find a consistent state where most of the
installed packages are upgraded to their latest version. Moreover, packages listed in
$opam/$SWITCH/reinstall will be reinstalled (or upgraded if a new version is available).
It will install each non-installed packages in topological order, similar to what it is done
during the install step, See §1.3.4.

• Once this is done the command will delete $opam/$SWITCH/reinstall.

1.3.7 Uploading Packages

When a packager wants to create a package, he should:

1. create $package/$NAME.$VERSION.opam containing in the format specified in §1.2.4.

2. create a file describing the package

3. make sure the build scripts:

• build the libraries and packages advertised in $package/$NAME.$VERSION.opam

• generates a valid $package/$NAME.install containing the list of files to install (the
file format is described in 1.2.5).

• generates a valid $package/$NAME.config containing the configuration flags for li-
braries exported by this package (the file format is described in 4.2.2).

4. create an archive $NAME.$VERSION.tar.gz with the sources he wants to distribute.

5. run the following command:

11

$ opam upload --opam $OPAM --descr $DESCR --archive $ARCHIVE $REPO

This command will parse $OPAM to get the package name and version and it will:

• move $OPAM to $opam/repo/$REPO/upload/$NAME.$VERSION.opam

• move $DESCR to $opam/repo/$REPO/descr/$NAME.$VERSION

• move $ARCHIVE to $opam/repo/$REPO/archives/$NAME.$VERSION.tar.gz

It will then perform the necessary operation (depending on the repository kind) to upload
the files upstream.

1.3.8 Removing Packages

When the user wants to remove a package, he should write:

$ opam remove $NAME

This command will check whether the package $NAME is installed, and if yes, it will display
to the user the list packages that will be uninstalled (ie. the transitive closure of all forward-
dependencies). If the user accepts the list, all the packages should be uninstalled, and the client
state should be let in a consistent state.

1.3.9 Dependency Solver

Dependency solving is a hard problem and we do not plan to start from scratch implementing a
new SAT solver. Thus our plan to integrate (as a library) the Debian depency solver for CUDF
files, which is written in OCaml.

• the dependency solver should run on the client; and

• the dependency solver should take as input a list of packages (with some optional version
information) the user wants to install, upgrade and remove and it should return a consis-
tent list of packages (with version numbers) to install, upgrade, recompile and remove.

2 Managing Repositories

2.1 State

Configuration files for OPAM repositories REPO are stored in $opam/repo/$REPO. Repositories
can be of different kinds (stored on the local filesystem, available via HTTP, stored under
git, . . .); they all share the same filesystem hierachy, which is updated by different operations,
depending on the repository kind.

• $opam/repo/$REPO/config contains the configuration off the repository $REPO. The for-
mat of repository config files is described in §??.

• $opam/repo/$REPO/opam/$NAME.$VERSION.opam is the OPAM specification for the pack-
age $NAME with version $VERSION (which might not be installed). The format of OPAM
files is described in §1.2.4.

• $opam/repo/$REPO/descr/$NAME.$VERSION contains the textual description for the ver-
sion $VERSION of package $NAME (which might not be installed). The first line of this file
is the package synopsis.

12

• $opam/repo/$REPO/archives/$NAME.$VERSION.tar.gz contains the source archives for
the version $VERSION of package $NAME. This folder is populated when a package needs to
be downloaded.

• $opam/repo/$REPO/updated contains the new available packages which have not yet been
synchronized with the client state. This file is created on update.If the file empty, this
means that the client state is up-to-date. The file format is the same as the one described
in §1.2.2.

• $opam/repo/$REPO/upload/$NAME.$VERSION/ contains the OPAM, description and archive
files to upload to the OPAM repository for the version $VERSION of package $NAME.

2.2 Files

2.2.1 Index of packages

$opam/repo/index follows a very simple syntax: each line of the file contains a space separated
list of words $NAME $REPO specifying that all the versions of package $NAME are available in the
OPAM repository $REPO. The file contains information on all available packages (e.g. not only
on the installed one).

For instance, if batteries version 1.0+beta is available in the testing repository and
ocamlfind version 1.2 is available in the default and testing repositories (where default is
one being used), then $opam/repo/index will contain:

batteries testing

ocamlfind default

2.3 Commands

2.3.1 Managing OPAM repository

When the user wants to manage OPAM repositories, he should write:

$ opam repository list # ’opam repository’ works as well

$ opam repository add [--kind $KIND] $REPO $ADRESS

$ opam repository remove $REPO

• list lists the current repositories by looking at $opam/config

• add [--kind $KIND] $REPO $ADDRESS initializes $REPO as described in §1.3.1.

• remove $REPO deletes $opam/repo/$REPO and removes $REPO from the repositories

list in $opam/config. Then, for each package in $opam/repo/index it updates the link
between packages and repositories (ie. it either deletes packages or symlink them to the
new repository containing the package).

3 Managing Compiler Switches

This milestone focus on the support of multiple compiler versions.

13

3.1 State

The state of OPAM repositories is extended with the directory $opam/repo/$repo/compiler

containing the compiler description files. When a repository is updated, this directory is updated
as well.

3.2 Files

3.2.1 Compiler Description Files

For each compiler switch SWITCH, the client state will be extended with the following files:

• $opam/compilers/SWITCH.comp

The syntax of .comp files follows the one described in §1.2.1 with the following restrictions:

<file> :=

opam-version: "1"

name: STRING

src: STRING

make: [STRING+]

?patches: [STRING+]

?configure: [STRING+]

?bytecomp: [STRING+]

?asmcomp: [STRING+]

?bytelink: [STRING+]

?asmlink: [STRING+]

?packages: <cnf-formula>

?requires: [STRING+]

?pp: [<ppflag>+]

?preinstalled: BOOL

<ppflag> := CAMLP4 { STRING+ }

| STRING+

• name is the compiler name, it should be identical to the filename.

• src is the location where this version can be downloaded. It can be:

– an archive available in the local filesystem

– an archive available via http or ftp

– a version-controlled repository under svn or git (with the expectation that these
tools are installed on the user host).

• patches are optional patch addresses, available via http, ftp or locally on the filesystem.

• configure are the optional flags to pass to the configure script. The order is relevant:
-prefix=$opam/SWITCH/ will be automatically added at the end to these options. Remark
that if these flags contain -bindir, -libdir, and -mandir, then every -prefix will be
ignored by configure.

14

• make are the flags to pass to make. It must at least contain some target like world or
world.opt.

• bytecomp, asmcomp, bytelink and asmlink are the compilation and linking flags to pass
to the OCaml compiler. They will be taken into account by the opam config command
(see §??).

• packages is the list of packages to install just after the compiler installation finished.
These libraries will not consider what is in the requires nor pp (as requires and pp

might want to use things already installed with packages).

• requires is a list of libraries and syntax extensions dependencies which will be added to
every packages installed with this compiler. The libraries and syntax extensions should
be present in packages defined in packages, otherwise an error should be thrown.

• pp is the command to use with the -pp command-line argument. It is either a full com-
mand line or a camlp4 command, such as CAMLP4 ["pp-trace"]: this will look for the
compilation flags for the syntax extension "pp-trace" and expand the camlp4 command-
line accordingly. All the syntax extensions used should be present in packages.

• preinstall is true when the version of the compiler available in the path is the same as
name.

For instance the file, 3.12.1+memprof.comp describes OCaml, version 3.12.1 with the mem-
ory profiling patch enabled:

opam-version: "1"

name: "3.12.1"

src: "http://caml.inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12.1.tar.gz"

make: ["world" "world.opt"]

patches: ["http://bozman.cagdas.free.fr/documents/ocamlmemprof-3.12.0.patch"]

And the file trunk-g-notk-byte.comp describes OCaml from SVN trunk, with no tk support
and only in bytecode, and all the libraries built with -g:

opam-version: "1"

name: "trunk-g-notk-byte"

src: "http://caml.inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12.1.tar.gz"

configure: ["-no-tk"]

make: ["world"]

bytecomp: ["-g"]

bytelink: ["-g"]

3.3 Commands

3.3.1 Switching Compiler Version

If the user wants to switch to an other compiler version, he should run:

$ opam switch [-clone] [-alias $ALIAS] $SWITCH

This command will:

15

• If $ALIAS is not set, set it to $SWITCH

• Look for an existing $opam/$ALIAS directory.

– If it exists, then change the ocaml-version content to $ALIAS in $opam/config.

– If it does not exist, look for an existing $opam/compilers/SWITCH.comp. If the file
does not exists, the command will fail with a well-defined error.

– If the file exist, then build the new compiler with the right options (and pass
--prefix $opam/$ALIAS to ./configure) and initialize everything in $opam/ in
a consistent state as if “opam init” has just been called.

– Update the file $opam/aliases with the line $ALIAS $SWITCH

• If the -clone option is set, the command will try to install the packages that were installed
before switching (that are not currently installed). In case the new version contains
installed packages that were not installed before switching, it will try to keep them.

In short, the heuristic is to install the maximum of previous packages and remove the
minimum. The success depends on the compatibility of the existing packages with respect
to this new $SWITCH.

4 Managing Configurations

4.1 State

4.2 Files

4.2.1 Substitution files: *.in

Any file can be processed using generated using a special mode of opam which can perform tests
and substitutes variables (see §4 for the exact command to run). Substitution files contains some
templates which will be replaced by some contents. The syntax of templates is the following:

• templates such as %{$NAME:$VAR}% are replaced by the value of the variable $VAR defined
at the root of the file $config/NAME.config.

• templates such as %{$NAME.$LIB:$VAR}% are replaced by the value of the variable $VAR

defined in the $LIB section in the file $config/PACKAGE.config

4.2.2 Package configuration files: *.config

$opam/SWITCH/config/NAME.config follows the syntax defined in §1.2.1, with the following
restrictions:

<file> :=

opam-version: "1"

<item>*

<item> := <def> | <section>

<section> :=

<kind> STRING {

?asmcomp: [STRING+]

?bytecomp: [STRING+]

?asmlink : [STRING+]

?bytelink: [STRING+]

16

?requires: [STRING+]

<def>*

}

<kind> := library | syntax

<def> := IDENT: BOOL

| IDENT: STRING

| IDENT: [STRING+]

$NAME.config contains platform-dependent information which can be useful for other li-
braries or syntax extensions that want to use libraries defined in the package $NAME.

Local and global variables The definitions “IDENT: BOOL”, “IDENT: STRING” and “IDENT:
[STRING+]”, are used to defined variables associated to this package, and are used to substitute
variables in template files (see §??):

• %{$NAME:$VAR}% will refer to the variable $VAR defined at the root of the configuration
file $config/NAME.config.

• %{$NAME.$LIB:$VAR}% will refer to the variable $VAR defined in the library or syntax

section named $LIB in the configuration file $config/$NAME.config.

Library and syntax sections Each library and syntax section defines an OCaml library
and the specific compilation flags to enable when using and linking with this library.

The distinction between libraries and syntax extensions is only useful at compile time to
know whether the options should be used as compilation or pre-processing arguments (ie. should
they go on the compiler command line or should they be passed to the -pp option). This is the
responsibility of the build tool to do the right thing and the <kind> of sections is only used for
documentation purposes in OPAM.

The available options are:

• asmcomp are compilation options to give to the native compiler (when using the -c option)

• bytecomp are compilation options to give to the bytecode compiler (when using the -c

option)

• asmlink are linking options to give to the native compiler

• bytlink are linking options to give to the bytecode compiler

• requires is the list of libraries and syntax extensions the current block is depending
on. The full list of compilation and linking options is built by looking at the transitive
closure of dependencies. The contents of deps is the list of libraries or syntax extension
the current section depends on. Note that we do not refer here to any package name,
as multiple packages can expose libraries with the same name and interface and thus we
want the user to be able to switch between them easily.

4.3 Commands

4.3.1 Getting Package Configuration

The first version of OPAM contains the minimal information to be able to use installed libraries.
In order to do so, the end-user (or the packager) should run:

17

$ opam config list

$ opam config var $NAME:$VAR

$ opam config var $NAME.$LIB:$VAR

$ opam config subst $FILENAME+

$ opam config [-R] include $NAME+

$ opam config [-R] bytecomp $NAME.$LIB+

$ opam config [-R] asmcomp $NAME.$LIB+

$ opam config [-R] bytelink $NAME.$LIB+

$ opam config [-R] asmlink $NAME.$LIB+

• list will return the list of all variables defined in installed packages (see §4.2.2)

• var $var will return the value associated to the variable $var

• subst $FILENAME replace any occurrence of %{$NAME:$VAR}% and %{$NAME.$LIB:$VAR}%

as specified in §4.2.1 in $FILENAME.in to create $FILENAME.

• includes $NAME will return the list of paths to include when compiling a project using the
package $NAME (-R gives a result taking into account the transitive closure of dependencies).

• bytecomp, asmcomp, bytelink and asmlink return the associated value for the section
$LIB in the file $config/$NAME.config (-R gives a result taking into account the transitive
closure of all dependencies).

18

	1 Managing Packages
	1.1 State
	1.2 Files
	1.2.1 General Syntax of OPAM files
	1.2.2 Package List: installed, reinstall and update
	1.2.3 Global Configuration File: config
	1.2.4 Package Specification files: *.opam
	1.2.5 Package installation files: *.install
	1.2.6 Pinned Packages: pinned

	1.3 Commands
	1.3.1 Creating a Fresh Client State
	1.3.2 Listing Packages
	1.3.3 Getting Package Info
	1.3.4 Installing a Package
	1.3.5 Updating Index Files
	1.3.6 Upgrading Installed Packages
	1.3.7 Uploading Packages
	1.3.8 Removing Packages
	1.3.9 Dependency Solver

	2 Managing Repositories
	2.1 State
	2.2 Files
	2.2.1 Index of packages

	2.3 Commands
	2.3.1 Managing OPAM repository

	3 Managing Compiler Switches
	3.1 State
	3.2 Files
	3.2.1 Compiler Description Files

	3.3 Commands
	3.3.1 Switching Compiler Version

	4 Managing Configurations
	4.1 State
	4.2 Files
	4.2.1 Substitution files: *.in
	4.2.2 Package configuration files: *.config

	4.3 Commands
	4.3.1 Getting Package Configuration

