linbox  1
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
oCActivityStateUsed by commentator
oCBaseTimerBase for class RealTimer; class SysTimer; class UserTimer;
oCBitVector
oCBlackboxArchetypeShowing the member functions provided by all blackbox matrix classes
oCBlackboxBlockContainerBase< _Field, _Blackbox >A base class for BlackboxBlockContainer. The primary member function is begin()
oCBlackboxContainerBase< Field, Blackbox >A base class for BlackboxContainer. The primary member function is begin()
oCBlackboxContainerBase< Field, _Blackbox >
oCBlackboxContainerBase< Field, Vector >
oCBlackboxFactory< Field, Blackbox >A tool for computations with integer and rational matrices
oCBlackboxFactory< Field, DenseMatrix< Field > >
oCBlackboxFactory< Field, SparseMatrix< Field, Row > >
oCBlackboxInterfaceThis blackbox base class exists solely to aid documentation organization
oCBlasBlackbox< _Field >Dense matrix representation for BLAS based elimination.A BlasBlackbox can be constructed from any blackbox matrix. This costs n blackbox matrix vector products in general, but is efficiently done from a DenseMatrix or SparseMatrix
oCBlasBlackbox< Domain >
oCBlasMatrixDomainMulAdd< Field, Operand1, Operand2, Operand3 >
oCBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
oCBlockMasseyDomain< _Field, _Sequence >Compute the linear generator of a sequence of matrices
oCBooleanSwitch
oCBooleanSwitchFactory
oCCekstvSwitch< Field >
oCCekstvSwitchFactory< Field >
oCCommentatorGive information to user during runtimeThis object is used for reporting information about a computation to the user. Such information includes errors and warnings, descriptions of internal progress, performance measurements, and timing estimates. It also includes facilities for controlling the type and amount of information displayed
oCComposeTraits< IMatrix >Used in ..., for example
oCComposeTraits< DenseMatrix< Field > >Used in smith-binary, for example
oCDenseMatrixBase< _Element >
oCDenseMatrixBase< _Field::Element >
oCDenseMatrixBase< Domain::Element >
oCDenseMatrixBase< Element >
oCDenseMatrixBase< Field::Element >
oCDenseRowsMatrix< _Row >
oCDenseSubmatrix< _Element >
oCDenseSubmatrix< _Field::Element >
oCDenseSubmatrix< Domain::Element >
oCDenseSubmatrix< Element >
oCDiagonal< Field, Trait >Random diagonal matrices are used heavily as preconditioners
oCDiagonal< _Field, VectorCategories::DenseVectorTag >Specialization of Diagonal for application to dense vectors
oCDiagonal< Field, VectorCategories::SparseAssociativeVectorTag >Specialization of Diagonal for application to sparse associative vectors
oCDiagonal< Field, VectorCategories::SparseSequenceVectorTag >Specialization of Diagonal for application to sparse sequence vectors
oCDiophantineSolver< QSolver >DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions
oCBlockRing< _Field >::ElementDefault constructable wrapper for BlasMatrix
oCElementAbstractAbstract element base class, a technicality
oCElementArchetypeField and Ring element interface specification and archetypical instance class.Element classes must contain public default constructor, copy constructor, assignment operator, and destructor. Note that primitive types such as int and double meet this specification
oCEliminator< Field, Matrix >
oCFFPACKSet of elimination based routines for dense linear algebra with matrices over finite prime field of characteristic less than 2^26
oCFieldAbstractField base class.Found in the file {linbox/field/abstract.h}. Abstract base class used to implement the field archetype to minimize code bloat. All public member functions of this class are purely virtual and must be implemented by all derived classes
oCFieldAXPY< Field >
oCFieldAXPY< Domain >
oCFieldAXPY< GivaroZpz< Std16 > >
oCFieldAXPY< GivaroZpz< Std32 > >
oCFieldAXPY< Modular< double > >
oCFieldAXPY< Modular< float > >
oCFieldAXPY< Modular< int16 > >
oCFieldAXPY< Modular< int32 > >
oCFieldAXPY< Modular< int8 > >
oCFieldAXPY< Modular< uint16 > >
oCFieldAXPY< Modular< uint32 > >
oCFieldAXPY< Modular< uint8 > >
oCFieldAXPY< ModularBalanced< double > >
oCFieldAXPY< ModularBalanced< float > >
oCFieldAXPY< ModularBalanced< int > >
oCFieldAXPY< PIR_ntl_ZZ_p >
oCFieldAXPY< PIRModular< int > >
oCFieldAXPY< PIRModular< int32 > >
oCFieldInterfaceThis field base class exists solely to aid documentation organization
oCFieldIO< _Element >Dummy field for conceptually unclear io
oCGaussDomain< _Field >Repository of functions for rank by elimination on sparse matrices
oCGivaroField< BaseField >Give LinBox fields an allure of Givaro FieldsThis class adds the necessary requirements allowing the construction of an extension of a LinBox field
oCGivPolynomial< T, Alloc >Polynomials over a domain
oCGivPolynomialRing< Domain, StorageTag >Polynomials with coefficients modulo some power of two
oCGmpRandomPrimeGenerating random prime integers, using the gmp library
oCGMPRationalElementElements of GMP_Rationals
oCHilbert_JIT_Entry< _Field >The object needed to build a Hilbert matrix as a JIT matrix
oCHom< Source, Target >Map element of source ring(field) to target ringAn instance of Hom is a homomorphism from a ring of type Source to a ring (usually field) of type Target. The intended use is that it will be a natural mapping. For instance:
oCInconsistentSystem< Vector >
oCindexDomain
oCInvalidMatrixInput
oCJIT_Matrix< _Field, JIT_EntryGenerator >Example of a blackbox that is space efficient, though not time efficient
oCJIT_Matrix< _Field, Hilbert_JIT_Entry< _Field > >
oCLABlockLanczosSolver< Field, Matrix >
oCLanczosSolver< Field, Vector >Solve a linear system using the conjugate Lanczos iteration
oCLastInvariantFactor< _Ring, _Solver >This is used in a Smith Form algorithm
oCLinboxError
oCLocal2_32Fast arithmetic mod 2^32, including gcd
oCMasseyDomain< Field, Sequence >Berlekamp/Massey algorithm
oCMatrixArchetype< _Element >Directly-represented matrix archetype
oCMatrixCategoriesFor specializing matrix arithmetic
oCMatrixRank< _Ring, _Field, _RandomPrime >
oCMatrixStreamReader< Field >
oCMessageClass
oCMethodMethod specifiers for controlling algorithm choice
oCMGBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
oCModular< _Element >Prime fields of positive characteristic implemented directly in LinBox
oCModular< int >
oCModularBalancedRandIter< Element >
oCModularRandIter< Element >
oCMVProductDomain< Field >Helper class to allow specializations of certain matrix-vector products
oCMVProductDomain< Domain >
oCNoHomErrorError object for attempt to establish a Hom that cannot exist
oCNonzeroRandIter< Field, RandIter >
oCNTL_ZZInteger ring
oCNTL_zz_pLong ints modulo a positive integer
oCNTL_zz_pEFor large cardinality, small prime
oCNTL_zz_pX
oCNTL_ZZ_pX
oCOneInvariantFactor< _Ring, _LastInvariantFactor, _Compose, _RandomMatrix >Limited doc so far
oCPair< T, I >Pair of I and T : struct { column index, value }
oCPIR_ntl_ZZ_pExtend Wrapper of ZZ_p from NTL. Add PIR functions

  
oCPowerOfTwoModular< Ints >Ring of elements modulo some power of two
oCPrimeStream< Element >
oCPowerOfTwoModular< Ints >::RandIter
oCRandIterAbstract
oCRandIterArchetypeRandom field element generator archetype
oCRationalReconstruction< _LiftingContainer >Limited doc so far. Used, for instance, after LiftingContainer
oCRationalRemainder< RatCRABase >Chinese remainder of rationals
oCRationalSolver< Ring, Field, RandomPrime, MethodTraits >Interface for the different specialization of p-adic lifting based solvers
oCRationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits >Partial specialization of p-adic based solver with block Wiedemann algorithm
oCRationalSolver< Ring, Field, RandomPrime, DixonTraits >Partial specialization of p-adic based solver with Dixon algorithm
oCRationalSolver< Ring, Field, RandomPrime, NumericalTraits >Partial specialization of p-adic based solver with a hybrid Numeric/Symbolic computation
oCRationalSolver< Ring, Field, RandomPrime, WiedemannTraits >Partial specialization of p-adic based solver with Wiedemann algorithm
oCRawVector< Element >
oCRawVector< Field::Element >
oCRebind< XXX, U >Used in support of Hom, MatrixHom
oCReverseVector< Vector >
oCRingInterfaceThis ring base class exists solely to aid documentation organization
oCSmithFormBinary< _Ring, _oneInvariantFactor, _Rank >Compute Smith form
oCSmithFormIliopoulosThis is Iliopoulos' algorithm do diagonalize
oCSmithFormLocal< LocalPID >Smith normal form (invariant factors) of a matrix over a local ring
oCSolveFailed
oCSolverTraits
oCSparse_Vector< T, I >Vector< Pair<T> > and actualsize
oCSparseMatrixBase< _Element, _Row, Trait >
oCSparseMatrixBase< _Field::Element, _Row >
oCSubiterator< Iterator >Subvector iterator class provides striding iterators.A Subiterator steps by a fixed stride thru the underlying container. Subiter<Iterator> requires that Iterator be a random access iterator class and then itself provides the full functionality of a random access iterator class. See STL documentation for that functionality. Documented here is only the constructor from (1) an iterator of an underlying container and (2) a stride amount
oCSubvector< Iterator, ConstIterator >Dense subvectorThis class provides a statically sized subvector of a random access container (such as std::vector, deque). It does not work on sparse linbox vectors. It implements all of the types and methods of a std::vector except for those that invalidate iterators, i.e., those (potentially) involving vector resizing, such as push_back(), insert(), resize()
oCToeplitz< _CField, _PField >This is the blackbox representation of a Toeplitz matrix
oCToeplitz< _Field >
oCToeplitz< typename _PField::CoeffField, _PField >
oCTransposeMatrix< Matrix, Trait >
oCTransposeMatrix< DenseMatrix< Field > >
oCUnparametricRandIter< K >
oCVectorCategoriesList of vector categories
oCVectorFraction< Domain >VectorFraction<Domain> is a vector of rational elements with common reduced denominator. Here Domain is a ring supporting the gcd, eg NTL_ZZ or PID_integer For compatability with the return type of rationalSolver, it allows conversion from/to std::vector<std::pair<Domain::Element> >. All functions will return the fraction in reduced form, calling reduce() if necessary
oCVectorStream< _Vector >Vector factory
oCVectorTraits< Vector >
\CWiedemannSolver< Field >Linear system solvers based on Wiedemann's method