DataFrame.
drop
Returns a new DataFrame without specified columns. This is a no-op if the schema doesn’t contain the given column name(s).
DataFrame
New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
a name of the column, or the Column to drop
Column
DataFrame without given columns.
Examples
>>> from pyspark.sql import Row >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df2 = spark.createDataFrame([Row(height=80, name="Tom"), Row(height=85, name="Bob")])
>>> df.drop('age').show() +-----+ | name| +-----+ | Tom| |Alice| | Bob| +-----+ >>> df.drop(df.age).show() +-----+ | name| +-----+ | Tom| |Alice| | Bob| +-----+
Drop the column that joined both DataFrames on.
>>> df.join(df2, df.name == df2.name, 'inner').drop('name').sort('age').show() +---+------+ |age|height| +---+------+ | 14| 80| | 16| 85| +---+------+