public class NaiveBayesModel extends ProbabilisticClassificationModel<Vector,NaiveBayesModel> implements NaiveBayesParams, MLWritable
NaiveBayes
param: pi log of class priors, whose dimension is C (number of classes) param: theta log of class conditional probabilities, whose dimension is C (number of classes) by D (number of features) param: sigma variance of each feature, whose dimension is C (number of classes) by D (number of features). This matrix is only available when modelType is set Gaussian.
Modifier and Type | Method and Description |
---|---|
NaiveBayesModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static NaiveBayesModel |
load(String path) |
Param<String> |
modelType()
The model type which is a string (case-sensitive).
|
int |
numClasses()
Number of classes (values which the label can take).
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
Vector |
pi() |
Vector |
predictRaw(Vector features)
Raw prediction for each possible label.
|
static MLReader<NaiveBayesModel> |
read() |
Matrix |
sigma() |
DoubleParam |
smoothing()
The smoothing parameter.
|
Matrix |
theta() |
String |
toString() |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
normalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchema
predict, rawPredictionCol, setRawPredictionCol, transformImpl
featuresCol, labelCol, predictionCol, setFeaturesCol, setPredictionCol
transform, transform, transform
params
getModelType, getSmoothing
extractInstances, extractInstances, validateAndTransformSchema
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
getWeightCol
save
validateAndTransformSchema
extractInstances
getRawPredictionCol, rawPredictionCol
getProbabilityCol
getThresholds
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static MLReader<NaiveBayesModel> read()
public static NaiveBayesModel load(String path)
public final DoubleParam smoothing()
NaiveBayesParams
smoothing
in interface NaiveBayesParams
public final Param<String> modelType()
NaiveBayesParams
modelType
in interface NaiveBayesParams
public final Param<String> weightCol()
HasWeightCol
weightCol
in interface HasWeightCol
public String uid()
Identifiable
uid
in interface Identifiable
public Vector pi()
public Matrix theta()
public Matrix sigma()
public int numFeatures()
PredictionModel
numFeatures
in class PredictionModel<Vector,NaiveBayesModel>
public int numClasses()
ClassificationModel
numClasses
in class ClassificationModel<Vector,NaiveBayesModel>
public Vector predictRaw(Vector features)
ClassificationModel
transform()
and output rawPredictionCol
.
predictRaw
in class ClassificationModel<Vector,NaiveBayesModel>
features
- (undocumented)public NaiveBayesModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<NaiveBayesModel>
extra
- (undocumented)public String toString()
toString
in interface Identifiable
toString
in class Object
public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable