Class/Object

org.apache.spark.mllib.classification

NaiveBayes

Related Docs: object NaiveBayes | package classification

Permalink

class NaiveBayes extends Serializable with Logging

Trains a Naive Bayes model given an RDD of (label, features) pairs.

This is the Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a 0-1 vector, it can also be used as Bernoulli NB (see here). The input feature values must be nonnegative.

Annotations
@Since( "0.9.0" )
Source
NaiveBayes.scala
Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NaiveBayes
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NaiveBayes()

    Permalink
    Annotations
    @Since( "0.9.0" )
  2. new NaiveBayes(lambda: Double)

    Permalink
    Annotations
    @Since( "1.4.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def getLambda: Double

    Permalink

    Get the smoothing parameter.

    Get the smoothing parameter.

    Annotations
    @Since( "1.4.0" )
  11. def getModelType: String

    Permalink

    Get the model type.

    Get the model type.

    Annotations
    @Since( "1.4.0" )
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  16. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  28. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. def run(data: RDD[LabeledPoint]): NaiveBayesModel

    Permalink

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

    data

    RDD of org.apache.spark.mllib.regression.LabeledPoint.

    Annotations
    @Since( "0.9.0" )
  32. def setLambda(lambda: Double): NaiveBayes

    Permalink

    Set the smoothing parameter.

    Set the smoothing parameter. Default: 1.0.

    Annotations
    @Since( "0.9.0" )
  33. def setModelType(modelType: String): NaiveBayes

    Permalink

    Set the model type using a string (case-sensitive).

    Set the model type using a string (case-sensitive). Supported options: "multinomial" (default) and "bernoulli".

    Annotations
    @Since( "1.4.0" )
  34. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  35. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  36. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped